

Lenstar

IOL Data Collection Worksheet

⇒ Collecting the following information from your lens manufacturer will help you add lenses to the EyeSuite Software for calculating suggested lens powers using Optical Biometry measurements.

Manufacturer name:	Lens name:	
Lens type: Ospherical	\bigcirc toric (see additional required information for Toric lenses below)	
Available spherical power	range: available increments:	
(You may wish to leave this defau typically 0.50D)	ulted at -10 to 40 to see calculations regardless of lens availability and the available inc	crements is
Manufacturer A (referred to as	A for ultrasound, "optical" can be changed to "acoustical" to best represent this value)	
SRK/T-A for optical biometr	ry (also referred to as A-Constant, must be a value between 100 to 132 & can be used for Shammas)	
Hoffer Q pACD for optical b	Diometry (must be a value between -6 to 40)	
Holladay sf for optical biom	netry (must be a value between -10 to 20)	
Haigis A0 (must be a value between	n -10 to 10), A1 (between -1 to 1), and A2 (between -1 to 1)	

*(The above constants may also be found on the Users Group for Laser Interference Biometry or ULIB at <u>www.ocusoft.de/ulib/</u> OR you can access these same constants along with more recently optimized constants by Steinbeis Vision Research at <u>www.iolcon.org</u>

Hill RBF A for optical biometry only (must be between 100 to 132)

(Hill RBF A can be found posted on Dr. Warren Hill's website, <u>www.rbfcalculator.com</u> under 'Lens Constants'. When a constant is not posted here, it is acceptable to use the SRK/T-A constant value as a starting point)

Barrett LF for optical biometry **only** (must be a value between -2 to 5) and can be calculated within EyeSuite as long as the SRK/T-A for optical biometry has been entered. To add the Barrett, select the value field and then right mouse click. The option to 'Calculate Barrett LF from SRK/T A Constant' will appear, left mouse click to choose the calculation. The Barrett value will automatically calculate and become available for IOL calculations.

Olsen for optical biometry **only**. Constants are provided by Dr. Olsen. You may wish to refer to a separate data collection sheet for Olsen.

For Toric lenses, the following information needs to be collected in addition to the above information:

*Recommended - first add a "Non Toric" model to capture the lower amounts of astigmatism with a cylinder range of 0.00 to the first cylinder power in the range of the lowest powered model available and 0.01 for the Power @ IOL to display an axis.

Model Name	Power @ IOL	Astigmatic Correction range	Power @ Cornea
Non Toric	0.01	to	0.00
		to	

Adding Spherical Lenses in EyeSuite

Step 1: Open the IOL Editor

Step 2: Click on the blue "+" above the list of existing lenses to add a new lens entry.

Step 3: Enter the name of the Manufacturer and model name.

IOL Editor - Name - Manufactur	er Name				
⊨ — 🛬 🋧	Manufacturer data Calcu	lation Properties	1		
► 🕍 Aaren	Manufacturer	Manufacturer Nan	ne		
► a AMO / J&J ► a Bausch & Lomb	Model	New Lens			
eyeonics	Туре	Spherical	⊖ toric		
 Hoya Lenstec 	Available spherical pow	vers 🔓			
Manufacturer Nam	Name	from [D] incl.	to [D]	increment	+
🕻 Name					
RxSight					_
Staar 1					

Step 4: Click on the blue "+" to the right of the "Available spherical powers" to add a range. This range can be edited to reflect the actual powers and increments that the lens is available in. However, the default range of -10.00 to +40.00 can be used for a greater range to calculate.

Name	from [D] incl.	to [D]	increment
Main	-10	.00 40.0	0.50

Step 5: Click on the "Calculation" tab and the blue "+" to the right of the "Spherical calculation constants" to add the available formula constants.

revision	shown Versi	on 1	•	go back to this revis
pherical calcula	tion constant	is		
Constant	Device	from [D] incl.	to [D]	value
Barrett DF	optical	-10.00	40.00	- 🔺
Barrett LF	optical	-10.00	40.00	- 1
laigis A0	optical	-10.00	40.00	-
laigis A1	optical	-10.00	40.00	- 9
laigis A2	optical	-10.00	40.00	-
HIII RBF A	optical	-10.00	40.00	
loffer Q pACD	optical	-10.00	40.00	-
Iolladay SF	optical	-10.00	40.00	-
Anufacturer A	optical	-10.00	40.00	
Disen ACD	optical	-10.00	40.00	-
Disen AR	optical	-10.00	40.00	-
Disen LT	optical	-10.00	40.00	-
Olsen N	optical	-10.00	40.00	

Step 6: Begin entering the values for each of the formula constants.

Note: You will not be able to calculate without these values entered for any given formula.

	shown Vers	ion 1	•	go back to this revision
pherical calcula	-			
Constant	Device	from [D] incl.	to [D]	value
HIII RBF A	optical	-10.00	40.00	- 🛓
Hoffer Q pACD	optical	-10.00	40.00	-
Holladay SF	optical	-10.00	40.00	
Manufacturer A	optical	-10.00	40.00	-
Olsen ACD	optical	-10.00	40.00	-]
Olsen AR	optical	-10.00	40.00	-
Olsen LT	optical	-10.00	40.00	-
Olsen N	optical	-10.00	40.00	
Olsen PR	optical	-10.00	40.00	-
Olsen SA	optical	-10.00	40.00	

Step 7: Once you have entered a value in the value column, scroll up to the Barrett LF and select the row, then right mouse click to populate the option to "Calculate LF from SRK/T A-Constant". Click on that option to autopopulate a value. This value can also be typed in if you do not wish to utilize the calculated value based on the SRK/T A Constant for optical biometry.

Constant	Device	from [D] incl.	to [D]	value	+	
Barrett LF	optical	-10:00	40.00]
Haigis A0	optical	-10.00	40.00	9	Iculate LF constant fro	om SRK/T A-Constant
Haigis A1	optical	-10.00	40.00		-	
Haigis A2	optical	-10.00	40.00		-	
HIII RBF A	optical	-10.00	40.00		-	
Hoffer Q pACD	optical	-10.00	40.00		-	
Holladay SF	optical	-10.00	40.00		-	
Manufacturer A	optical	-10.00	40.00		-	

Step 8: The Barrett DF may be entered if the lens shifts to a meniscus lens design for low powers. For example, some lenses will shift from a biconvex lens design to meniscus at 5.00D. Therefore, the value for the Barrett DF would be 5.00D.

Barrett DF	optical	-10.00	40.00	5.00
------------	---------	--------	-------	------

Note: Please refer to the Olsen IOL Data Collection Worksheet for calculated Olsen values.

Step 9: Once you have entered all of the formula constants, click "OK" to save your entries.

arrett DF		from [D] incl.	to [D]	value
	optical	-10.00	40.00	5.00 🔺 🖕
arrett LF	optical	-10.00	40.00	1.88
aigis A0	optical	-10.00	40.00	1.080
aigis A1	optical	-10.00	40.00	0.400
aigis A2	optical	-10.00	40.00	0.100
I RBF A	optical	-10.00	40.00	119.00
offer Q pACD	optical	-10.00	40.00	5.80
olladay SF	optical	-10.00	40.00	1.96
anufacturer A	optical	-10.00	40.00	118.80 丿
sen ACD	optical	-10.00	40.00	4.66
sen AR	optical	-10.00	40.00	19.973
sen LT	optical	-10.00	40.00	0.80
lsen N	optical	-10.00	40.00	1.55570 🔽
uidance				
ofino enhorical	constants values	for this IOI		
enne spherica	Constants values	STOL UNSTOL.		
uidance Define spherical	constants values	s for this IOL.		

Adding Toric Lenses in EyeSuite

Step 1: Repeat steps 1-3 from "Adding Spherical Lenses in EyeSuite", EXCEPT in Step 3:

Choose "Toric"

Manufacturer data Calcul	ation Properties			
Manufacturer	Manufacturer Name			
Model	New Lens	\frown		
Туре	 spherical 	toric		
Available spherical pow	ers			
Name	from [D] incl.	to [D]	increment	+
Main	-10.00	40.00	0.50	
Available cylindrical pov	vers			
Model		Power@IOL		+
				_

Note: This also adds a section for "Available cylindrical powers".

Step 2: Click on the blue "+" next to the "Available cylindrical powers" to add each model of cylinder correction.

Note: It's best to add these one at a time. It is also recommended, to enter a "Non Toric" model for the lower amount of measured astigmatism so a calculator will still populate.

	Calcul	ation	Properties						
Manuf	acturer	Manu	facturer Nan	ne					
	Model	New L	ens						
	Туре	🔾 spl	nerical		● toric				
Available spheric	al powe	ers —							
Name		from [D] incl.	t	o [D]		increment		4
Main			-	-10.00		40.00		0.50	_
Available cylindri	cal pow	vers –							
Model	cal pow	vers –		F	Power@IOL				-
	cal pow	vers –		F	Power@IOL			0.01	1
Model	cal pow	vers –		F	Power@IOL			0.01	-
Model	cal pow	vers –		F	Power@IOL			0.01	-
Model ABCx / Non Toric Guidance			this IOL is av		Power@IOL			0.01	-
Model ABCx / Non Toric			this IOL is av		Power@IOL			0.01	-

Step 3: Once you have finished entering each model and Power at IOL, Click on "Calculation" to continue.

+
0.50
+
+
0.01
2.25

Step 4: Repeat steps 5-8 from "Adding Spherical Lenses in EyeSuite".

Step 5: Click on the blue "+" to the right of the "Torical Calculation Constants" to pull over each toric model that was entered in the "Manufacturer Data" tab.

CAUTION: Do this one at a time!

Spherical calcul	ation constants -	from [D] incl.	to [D]	value	_
Barrett DF	optical	-10.00	40.00	5.00 ×	
Barrett LF	optical	-10.00	40.00	1.88	
Haigis A0	optical	-10.00	40.00	1.080	1
Haigis A1	optical	-10.00	40.00	0.400	-
Haigis A2	optical	-10.00	40.00	0.100	
		40.00	40.00	440.00	
Forical calculation	on constants				
Forical calculation	from [D] incl.	to [D]	Power@Cornea	Comments	
Forical calculation Model ABCx / Non Torio	from [D] incl.	to [D]	<u> </u>		-
Model	from [D] incl.		<u> </u>		-
Model	from [D] incl.		<u> </u>		-
Model	from [D] incl.				-
Model	from [D] incl.				

Step 6: Modify the cylinder ranges and power at the IOL plane for the first model.

Note: EyeSuite does not allow for a gap between ranges. Therefore, ranges may require slight modifications.

pherical calculat	ion constants	1			
Constant	Device	from [D] incl.	to [D]	value	
Barrett DF	optical	-10.00	40.00	5.00 _	
Barrett LF	optical	-10.00	40.00	1.88	
Haigis A0	optical	-10.00	40.00	1.080	
Haigis A1	optical	-10.00	40.00	0.400	
Haigis A2	optical	-10.00	40.00	0.100	-
Model	from [D] incl.	to [D]	Power@Cornea	Comments	-
ABCx / Non Toric	0.0	0 0.7	5 0.0	0	
Guidance					
		this IOL.			

Step 7: Click on the blue "+" to right of the "Torical calculation constants" to pull in the next model and modify the cylinder range and the "Power @ Cornea". Repeat Step 5 until completed.

Constant	Device	from [D] incl.	to [D]	value
Barrett DF	optical	-10.00	40.00	5.00 🔺 🚬
Barrett LF	optical	-10.00	40.00	1.88
Haigis A0	optical	-10.00	40.00	1.080
Haigis A1	optical	-10.00	40.00	0.400
Haigis A2	optical	-10.00	40.00	0.100
Model ABCx / Non Toric	from [D] incl.	to [D]	Power@Cornea	Comments
ABCx / Non Toric ABC150	0.0			
Guidance				

Step 8: Click "OK" to save your entries.

4

	shown Version 2	-	•	go back to this revision
pherical calculat	ion constants -			
Constant	Device	from [D] incl.	to [D]	value
arrett DF	optical	-10.00) 40.00	5.00 🔺
Barrett LF	optical	-10.00	40.00	1.88
laigis A0	optical	-10.00	40.00	1.080
laigis A1	optical	-10.00	40.00	0.400
laigis A2	optical	-10.00		0.100
orical calculation	from [D] incl.	to [D]	Power@Cornea	Comments
BCx / Non Toric	(0.00 0.7	-	
ABC150		0.75 1. 6	50 1.0	3
Suidance				
Define spherical o	constants values t	for this IOL.		